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Abstract

GUANSONG WANG: Realized Kernels with Moving Average Noises and Optimal
Weights

(Under the direction of Eric Renault)

This paper studies the effect of the time dependence in micro-structure noise on

the finite sample properties of the realized kernel estimator of the integrated variation

of an asset price series using high frequency sample. A bias correction is proposed

to eliminate the extra bias brought from the MA noises in the RK estimator. With

the control variable interpretation of the RK estimator the optimal weights and its

feasible approximation can be constructed under the MA noise assumption.
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1 Introduction

The integrated variation, or equally the quadratic variation, of a log price process mea-

sures the risk of the asset and is crucial in pricing theories. With access of the (ultra)

high frequency intra-daily data of the process, it can be optimally estimated by the sum

of returns within the period of interest. However the real observations are known to be

contaminated by the micro-structure noises which introduce a bias term dominating the

information of interest into the estimator. Several consistent estimators of the integrated

variation using noisy observations have been developed in the literature. Some achieve

the optimal convergence rate (N1/4) as proved in Gloter and Jacod (2001a,b).

Among those methods, the Realized Kernel (RK) estimator designed by Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008) is of great interest. First, different kernel

functions can be applied to obtain different asymptotic properties. The estimator using

Tukey-Hanning kernel almost achieves the semi-parametric lower bound. Second, other

estimators such as Two-Scale estimator by Zhang, Mykland, and Ait-Sahalia (2005),

Multiple-Scale estimator by Zhang (2006), and Pre-Average estimator by Jacod, Li, Myk-

land, Podolskij, and Vetter (2009) can be associated with the realized kernel estimators

by applying corresponding kernel functions. Third, sacrificing the convergence rate, the

RK estimators can possess other advantages. With a slower convergence rate of N1/5,

the RK estimators can ensure positivity in probability. With a convergence rate of N1/6,

its asymptotic is robust with the violation of the white noise assumption.

For the simplicity, most of the literature assumes the noise process to have no auto-

correlations which may be problematic when trying to utilize tick-by-tick sample sets.

Hansen and Lunde (2006) gave warning about the time-dependent noise along with other

ugly facts in high frequency sample. Recently Aı̈t-Sahalia, Mykland, and Zhang (2011)

also found evidence against the simple assumption. A study of Dow Jones Industrial

Average component stocks in 2011 agrees with the above finding. An example of stocks

AA and IBM is shown in Section 3.
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In this paper, I adopt a moving average micro-structure noise assumption and study

its effect on the RK estimator. Under the new assumption the RK estimator is still

consistent but biased in finite sample. The bias can be either negative or positive. Parzen

kernel with slower convergence rate is robust to moving average noises due to its greater

optimal bandwidth increasing at the rate of N3/5.

To overcome the finite sample bias one can choose to sample less frequently or to

ignore the bias using Parzen kernel. Alternatively a bias correction of the RK estimator

is proposed. It simply put weight 1 on the first q autocovariations to fully eliminate

the noises following MA(q) process. This can also be interpreted by the control variable

approach. The biased corrected realized variation RVq is used as an unbiased estimator

and the autocovariations with higher orders (greater than q) are used as control vari-

ables to reduce variance. The optimal weights for the control variables, as mentioned

in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), can be constructed with the

knowledge of the data generating process and a feasible approximation is available using

preliminary estimates of the integrated variation and autocovariations.

The simulation experiment confirms the significant improvement of the bias correction

over the conventional RK estimator. The RK estimator with Parzen kernel is relatively

robust to the MA noises while it still benefit from the bias correction when using highest

frequency samples. The RK estimator with optimal weights performs better than other

kernels with small bandwidths. Compared to the RK estimator, the bias corrected RV

estimator is fairly accurate and can be a better preliminary estimator than the sparsely

sampled RV.

The structure of the rest of the paper is as follows. Section 2 give a brief review of

the model and the design of the Realized Kernel estimator. In Section 3 an empirical

examination on the stock AA and IBM suggests the noises are autocorrelated. With the

MA noise assumption the semi-parametric lower bound of the estimator can be obtained

numerically. Then I show the bias in the RK estimator and propose a bias correction.
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In Section 4 the RK estimator and bias correction is interpreted by the control variable

approach from which the optimal weights can be constructed. The results of a Monte

Carlo experiment and an empirical application are summarized in Section 5 and Section 6.

At last Section 7 concludes.

2 Realized Kernel

2.1 Model

We assume the underlying efficient log-price process {Xt}t≥0 of an asset is a semi-

martingale process in a probability space (Ω,F , P ) with filtration {Ft}t∈[0,T ]:

dXt = µtdt+ σtdWt (1)

where the stochastic processes µt and σt are Ft adapted and càdlàg. In high frequency

samples the drift term becomes statistically irrelevant because µtdt is of lower order than

the diffusion component σtdWt. Formally µt is set to be zero through out this paper.

Our interest is to estimate the integrated variation of the process within a fixed time

period such as one day (T = 1):

IVT =

∫ T

0

σ2
t dt (2)

The observations are maken on a time grid {0 = t0 < t1 < · · · < tN = T}. There

are different ways to construct observation time grids. Most of the literature assume

calendar time sampling (CTS) such that each interval between two observations is of

the same length such as one second, one minute or twenty minutes. Tick time sampling

(TTS) is to sample every fixed number of trades or quotes. If the sampling intervals are

chosen to equally divide the IVT it is called business time sampling (BTS). Even though

the BTS is not feasible, empirical results suggest that TTS may approximate BTS. For
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more on sampling schemes, see Hansen and Lunde (2006). The RK estimator is designed

under the CTS however it is shown to be robust under stochastic sampling. Further in

Section 4 the control variable interpretation of the RK estimator naturally adapts to the

TTS.

It is well known that the realized variation (RV) or quadratic variation of X converges

to IVT as the mesh of the partition (supi(ti − ti−1)) diminishes to zero when N rises to

infinity:

RV N
T =

∑
ti≤T

(Xti −Xti−1
)2 →p IVT (3)

The convergence is at the rate
√
N and the asymptotic distribution has been derived in

Barndorff-Nielsen and Shephard (2002). It suggests that one should sample as frequently

as possible to efficiently utilize high frequency data sets.

Nevertheless sampling too frequently may not be a wise choice in practice when the

observed log prices are embedded with micro-structure noises. Denote {εt}t≥0 as the

noise process, the observable process {Yt}t≥0 is:

Yt = Xt + εt (4)

The term εt summarizes various micro-structure noises due to the trading scheme of the

stock market. Madhavan (2000) provided a comprehensive survey of how price formation

and information distort the observed log-prices. Aı̈t-Sahalia, Mykland, and Zhang (2011)

pointed out that even though some market frictions such like discreteness of prices, bid-

ask bounces, and different market trades have been reduced by the decimalization and

electronic trading, some market frictions still linger such as delayed trade reports. As

the sampling grid becomes finer the magnitude of the noise dominates the magnitude of

the realized variation. Consequently RV N
T with high frequency data is severely biased.

For the convenience to design consistent estimators most literature including the
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Realized Kernel estimators impose the assumption that the noise process is uncorrelated

with the efficient log price process and has no serial dependence. The estimators are then

generalized to more realistic circumstances. Formally, the assumptions are summarized

below:

Assumption 1. The noise process {εt} satisfies:

1. Finite Moments: E[εt] = 0, V [εt] = E[ε2
t ] = σ2

ε , E[ε4
t ] <∞.

2. Non-autocorrelated: E[εtεs] = 0,∀t 6= s.

3. Non-correlated: {Xt} and {εt} are uncorrelated.

Under the above assumptions, the observed log-returns ∆Yi = Yti−Yti−1
are composed

of the latent log-returns ∆Xi and the first difference of the noises ∆εi which are an MA(1)

process. The goal of RK estimators is to estimate IVT of the log-price process X using

the observed log-returns {∆Yi}Ni=1.

2.2 RK Estimator

This section summarizes the Realized Kernel estimator of integrated variation under the

martingale difference sequence micro-structure noises. The RK estimator utilizes the

first realized autocovariation to eliminate the bias from the noise in the realized variation

and higher order realized autocovariations to reduce the variance of the estimator. The

realized autocovariations are weighted by a kernel function. RK estimators with different

kernel functions have different asymptotic properties and can relate to other consistent

estimators in the literature.

Formally the RK estimator is designed as the following:

RKk(H) = γ0(Y ) +
H∑
h=1

k(
h− 1

H
) (γh(Y ) + γ−h(Y )) (5)
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where k(·) is a kernel function that equates 1 at point zero and equates 0 at point one.

The realized autocovariation γh(Y ) is defined as:

γh(Y ) =
N∑
i=1

∆Yi∆Yi+h, for h = −H, . . . ,−1, 0, 1, . . . , H (6)

Note that γ0 is the realized variation of the process Y . In practice where out of sample

observations are unavailable, the summations in the γh are taken from i = H + 1 to

i = N −H and then the estimator is scaled up accordingly.

The RK estimator defined in Equation (5) is “flat-topped” as the weight on the γ1

and γ−1 is k(0) = 1 instead of k(1/H). It is designed this way to correct the bias in

the realized variation under the m.d.s. noise assumption. Conditional on the volatility

path, the expectation of γ0 is IVT + 2Nσ2
ε , the expectation of γ1 and γ−1 is −Nσ2

ε , and

γh with |h| > 1 has zero expectation. Therefore the unit weight on the first realized

autocovariation balances out the bias in the realized variation due to the noise. For

non “flat-topped” RK estimator the weight on γh is k( h
H

) rather than k(h−1
H

) so that it

generally cannot guarantee unbiasedness. In order to obtain consistency for non “flat-

topped” RK estimator the weight on γ1 and γ−1 has to be close enough to one, that

is, the first derivative of the kernel function at point zero has to close enough to zero

(k′(0) ≈ 0).

For the consistency the bandwidth H is proportional to Nη, where η depends on the

kernel function. The asymptotic variance of the RK estimator is determined by the char-

acteristics of the particular kernel function, the chosen bandwidth, and the parameters

of the data generating process such as the noise-to-signal ratio ξ2 and the measure of

heteroskedasticity ρ:

ξ2 =
σ2
ε√

T
∫ T

0
σ4
t dt

and ρ =

∫ T
0
σ2
t dt√

(T
∫ T

0
σ4
t dt)

(7)
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For the chosen kernel function, optimal bandwidth H∗ can be obtained by minimizing

the asymptotic variance.

Table 1: Realized Kernel Functions

k(x) Rate H∗

Bartlett 1− x 1/6 2.28 · ξN2/3

Cubic 1− 3x2 + 2x3 1/4 3.68 · ξN1/2

Tukey-Hanningp sin2(π/2 · (1− x)p) 1/4

{
5.74 · ξN1/2 p = 2

39.16 · ξN1/2 p = 16

Parzen

{
1− 6x2 + 6x3 0 ≤ x ≤ 1/2

2(1− x)3 1/2 ≤ x ≤ 1
1/4 4.77 · ξN1/2

Parzen (Slow) . . . 1/5 3.51 · ξ4/5N3/5

The convergence rate is the α such that Nα(RKk(H∗) − IVT ) has an asymptotic distribution. The scalars in H∗ are
obtained by minimizing the asymptotic variance and are determined by the kernel function. For the kernel functions with
1/4 convergence rate the scalars also depend on ρ as in Equation (7) and are computed as ρ = 1.

A few interesting kernel functions are list in Table 1. The convergence rate is the

α such that Nα(RKk(H) − IVT ) has an asymptotic distribution as the bandwidth is

taken optimally. The RK estimator with Bartlett kernel function has the slowest conver-

gence rate and it is asymptotically equivalent to the Two Scale RV estimator of Zhang,

Mykland, and Ait-Sahalia (2005). Gloter and Jacod (2001a,b) have shown that the

fastest convergence rate is 1/4. It can be achieved by the kernel functions satisfying

that k′(0) = k′(1) = 0 such as the Cubic function and the Tukey-Hanning function.

The Cubic RK estimator is asymptotically equivalent to the Multi-Scale estimator of

Zhang (2006). The Tukey-Hanningp RK estimator approaches the lower bound as p in-

creases. The Parzen kernel function can also achieve the optimal convergence rate when

the bandwidth is proportional to N1/2. However it is more attractive to be used as a

non “flat-topped” kernel paired with a bandwidth proportional to N3/5 and a slower

convergence rate since it guarantees positivity of the RK estimator.

The last column in Table 1 shows the formula for the optimal bandwidth of each

kernel functions. The constant term is determined by the characteristics of the kernel

function. The optimal bandwidth is also positively related to the noise-to-signal ratio ξ2.
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3 Time Dependent Noise

An attractive feature of RK estimator is that it is robust against scenarios violating

Assumption 1 such as stochastically sampling, endogenous noise and serial dependent

noise, the last of which this section is focused on. The no autocorrelation assumption

has already been questioned by a few authors. In the following subsections I confirm

their studies using the stock prices of AA and IBM in the year of 2011 and propose a

numeric method to compute the semi-parametric lower bound of IV estimators with the

serial dependent noises. A bias correction can improve the accuracy of the RK estimator

in finite sample.

3.1 Empirical Evidence

Hansen and Lunde (2006) demonstrated the “ugly” fact that the noise is time dependent

with the help of the signature plot which captures the relation between an IV estimator

and the sampling frequency. For illustration, define the RV estimators:

RVH = γ−H(Y ) + γ−H+1(Y ) + · · ·+ γH−1(Y ) + γH(Y ) (8)

where γh(Y ) is the realized variation defined in Equation (6) and note that γ0(Y ) is the

realized variation. It is easy to show that under Assumption 1:

E[γh] =


IVT + 2Nσ2

ε h = 0

−Nσ2
ε |h| = 1

0 otherwise

(9)

As a result the realized variation RV0 suffers from an upwards bias which increases as

the observations are sampled more frequently. Therefore the signature plot of RV0 should

be a downward sloping curve converging to the real level as the dataset is sampled more
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sparsely. Under Assumption 1 the RV1 or any RVh for h > 0 is unbiased. The RV1, which

can be seen as the RK estimator with bandwidth 1, is indeed the estimator introduced

by Zhou (1996). Therefore the signature plot of RVh for h > 1 should be around the real

level regardless of the sampling frequency.

Figure 1: Signature Plots of AA in 2011
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The left figure is for transcation data and the right figure is for mid-quote data. The horizontal line is the level of the
averaged daily sparse sampled (20 minutes) RV in the year which is at around 0.0004. Each line represents the averaged
estimated integrated variation with different sampling frequencies. RVh is the realized variation estimator defined in
Equation (8). There are two X-axes: ticks and corresponding seconds of the subsampling interval in average.

Figure 1 shows the signature plots of the stock AA in the year 2011. The X-axis

denotes the length of the sampling frequency by ticks and seconds and the rightside

represents lower frequency. The horizontal line at the level around 0.0004 is the averaged

realized variation with 20 minutes log-returns of the 251 full trading days, which is used

as a proxy of the real average daily IV.

As predicted, RV0 decreases to the sparsed sampled average level as the log-returns

are sampled less frequently. The fact that the signature plots for RV1 and RV2 are still

significantly upwards biased in high frequency samples suggests the assumption of non-

autocorrelation is likely to be false. As higher orders of γ added into the RV estimator
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the bias is reduced. The signature plots for RV5, RV7 and RV9 are close to the horizontal

line at all frequencies. Hansen and Lunde (2006) found the time dependence in the stock

AA lasts for 2 minutes or 30 ticks in 2000 and 2004 and Figure 1 suggests that the it

lasts for 9 ticks in 2011 since RV9 appears to be unbiased.

Figure 2 illustrates the auto-correlation functions of stock AA and IBM in 2011. The

first and third rows are the ratio of days with significant autocorrelations at 5% and

1% confidence levels and the second and fourth rows are the averaged autocorrelations.

The first autocorrelations are all significant without exception. The mid-quote data has

more time dependence than the transaction data in the sense that the ratio of significant

days is higher for most lags. For AA the time dependence seems to exist up to 10

lags which coincides with the pattern in Figure 1. The average ACF plots exclude the

first autocorrelations since they are of much greater magnitude than the rest. The first

autocorrelations for transaction and mid-quote data of AA are −0.34 and −0.50 and

those for transaction and mid-quote data of IBM are −0.30 and −0.49. Even though

with a high ratio of significance the higher order autocorrelations are of quite small

magnitude. The ACF of transaction data resembles a moving average process while the

ACF of mid-quote data is more likely an auto-regressive process particularly for AA.

Aı̈t-Sahalia, Mykland, and Zhang (2011) also showed that the autocorrelogram of stock

prices is better captured by an AR(1) noise structure. They also found the more liquid

the stock, the more likely the noise process is autocorrelated.

3.2 Moving Average Assumption

Even though the magnitude of the autocorrelation is small, a large sample size makes its

effect on the IV estimator nontrivial . We model the noise process by a moving average

structure because the autocorrelation disappears quickly and the MA structure is easier

to relate to existing theories and estimators. The assumption of time-dependent noise is

given below.
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Figure 2: Percentage of Days with Significant ACF in 2011
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1%) significant ACF of log-returns for lags from 1 to 2000. The second and fourth panels are the yearly averaged ACF of
log-returns. There are two X-axes: lags of ACF and corresponding seconds of sampling interval in average.
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Assumption 2. We assume the noise ε is a MA(q − 1) process.

εi = υi + β1υi−1 + β2υi−1 + · · ·+ βq−1υi−q+1 (10)

where υ is a martingale difference sequence process, and E[υ2] = σ2
υ.

The noise process is modeled by MA(q − 1) so that the noise component ∆εi in log

return ∆Yi follows a MA(q) process.

∆εi = εi − εi−1

= υi + (β1 − 1)υi−1 + · · ·+ (βq−1 − βq−2)υi−q+1 − βq−1υi−q

= θ0υi + θ1υi−1 + θ2υi−2 + · · ·+ θqυi−q (11)

We rewrite ∆ε using parameters {θ0, . . . , θq} in the last step in Equation (11) for sim-

plicity of notations. The parameters θ satisfy θ0 = 1 and
∑q

τ=0 θτ = 0 in order to ensure

∆εi as a first order difference of an MA noise process.

Given that ∆ε follows an MA(q) process, the covariances of the observed log returns

∆Yi are:

Cov[∆Yi,∆Yi+k] =


σ2
i + ϕkσ

2
υ if k = 0

ϕkσ
2
υ if k = 1, 2, . . .

(12)

where σ2
i =

∫ ti

ti−1

σ2
τdτ and ϕk =


0 if |k| > q∑q−|k|

τ=0 θτθτ+|k| if |k| ≤ q

(13)

Note that when q = 1 Assumption 2 is exactly the same as Assumption 1.
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3.3 Parametric Lower Bound

Gloter and Jacod (2001a,b) derived the optimal convergence rate and asymptotic Fisher

information of the IV estimator for a semi-martingale process with martingale difference

sequence noises. The optimal asymptotic variance of the estimator of a constant volatility

is considered as the semi-parametric lower bound of the IVT estimators. Here we will

extend the result to the model with moving average noise.

First denote Φ as the q× 1 vector (ϕ0, ϕ1, . . . , ϕq)
′, and CN(σ2, σ2

υ,Φ) as the variance

covariance matrix of (∆Y1, . . . ,∆YN)′. Assuming constant volatility (σ2
t = σ2,∀t), the

(i, j) entry of the matrix CN is given by the function:

CN(σ2, σ2
υ,Φ)i,j =



σ2

N
+ ϕ0σ

2
υ if i = j

ϕkσ
2
υ if |i− j| = k ≤ q

0 otherwise

(14)

Applying the third case of the theory in Gloter and Jacod (2001a) to the model with

MA noises gives the following theorem.

Theorem 3.1. Suppose the observed process Y is defined as in Equation (4) where X

is defined as in Equation (1) such that σt = σ for any t and ε satisfies Assumption 2.

Denote λi(σ
2, σ2

υ,Φ) as the eigenvalues of matrix CN(σ2, σ2
υ,Φ). If for any sequence {hn}

with a limit h, the following two conditions are satisfied:

sup
1≤i≤N

|δNi | → 0
1

2h2

N∑
i=1

(δNi )2 → I(σ2,Φ) (15)

where δNi = unhn/N/λi(σ
2, σ2

υ,Φ), un = (σ2
υ/N)1/4, then the optimal IV estimator σ̂2

converges to σ2:

N
1
4 (σ̂2 − σ2)→d N (0, συI(σ2,Φ)−1) (16)
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When q is equal to one , the model degenerates to the one with white noise assumption

and the matrix CN is tri-diagonal 1 whose eigenvalues can be analytically solved (see

Sun (2006)). Therefore the closed form expression of I(σ2) can be found as the limit in

Equation (15). In that case, Equation (16) becomes:

N1/4(σ̂2 − σ2)→ N (0, 8συσ
3) (17)

The asymptotic variance 8σvσ
3 has been known as the semi-parametric lower bound for

the consistent IV estimators. While with q greater than one, there is no closed form

solution to the eigenvalues of matrix CN . Consequently, we are unable to write out the

explicit expression of I(σ2,Φ) but only to approximate the lower bounds numerically.

As an example, Table 2 shows the approximated lower bounds of the model under

Assumption 2 and q = 2 which are calculated with the dimension of CN as 1000, 5000,

and 10000. Similarly as the case when q = 1, the inverse of the Fisher information is

proportional to σ3 and the factor is determined by Φ. Note that when θ1 = −1 or β1 = 0,

the differenced noise process is MA(1) and the approximated and the computed lower

bound is 8.16 which is close to the predicted value 8 in Equation (17).

Table 2: Numerically Computed Lower Bounds of Model with MA(2) Noise

β1

N\ θ1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

1,000 8.53 9.44 10.37 11.31 12.26 13.23 14.21 15.20 16.20 17.10 9.14
5,000 8.23 9.08 9.93 10.79 11.66 12.53 13.40 14.28 15.17 16.05 8.48
10,000 8.16 9.00 9.83 10.68 11.52 12.37 13.22 14.08 14.93 15.79 8.33

The parameters of the ε process are β0 = 1 and β1 in the first row. The parameters of the ∆ε process are θ0 = 1, θ1 in
the first row and θ2 = −1− θ1. The lower bounds are in terms of σ2σv .

1A tri-diagonal matrix has non-zero elements only on its major diagonal and the two sub-diagonals
above and below.
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3.4 Bias Corrected Realized Kernel

The RK estimator is initially designed under the white noise assumption the estima-

tor still has the same optimal convergence rate with time-dependent noise but different

asymptotic variance. However depending on the autocorrelations of the log-returns the

RK estimator can be severely biased either upwards or downwards in rather large finite

samples.

Theorem 3.2. Suppose the observed process Y is defined as in Equation (4) where X is

defined as in Equation (1) and ε satisfies Assumption 2. The expectation of γh is:

E[γk] =


IVT +Nϕ0σ

2
υ if k = 0

(N − k)ϕkσ
2
υ if 0 < k ≤ q

0 if k > q

(18)

where γk is defined as
∑N−k

i=1 ∆Yi∆Yi+k and ϕ’s are defined in Equation (13).

The γk defined above is different from in Equation (6) that it does not include out

of sample log-returns. When the sample size is large the difference is negligible and the

one defined above will be used in the following of this paper.

In the case of Assumption 1 where q is equal to one, there are only two realized

autocovariations with non-zero expectations and (2,−1)′ is the only possible value of

(ϕ0, ϕ1)′ because of the restriction of the assumption. Therefore a flat-top kernel function

(k(0) = 1) guarantees unbiasedness.

E[RK(H)] = E[γ0] + k(0)
2N

N − 1
E[γ1]

= IVT + (ϕ0 + 2ϕ1k(0))σ2
v = IVT , if k(0) = 1

When q is greater than one, (ϕ0, ϕ1)′ has other possible values and ϕh is nonzero up to h =

q. The expectation of RK(H) becomes more involved that the flat-top kernel function
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cannot be certain to balance out the bias in realized variation with the first realized

autocovariation. In general, the conventional realized kernel estimators are biased in

finite sample with time-dependent noise. The bias can be either upwards or downwards

depending on the parameters of the moving average noise process. This also provides

another explanation to the negative bias in signature plots (Figure 1) other than the

correlation of the latent process X and the noise process as mentioned in Hansen and

Lunde (2006).

The first solution to the bias problem is not to sample at the highest frequency

available. In Figure 1 the signature plots converge after 50 ticks (14 seconds) for trans-

action data and 200 ticks (3.7 seconds) for mid-quote data. Hence sparsely sampling

the log-returns will mostly eliminate the time dependence in the noises. This solution is

sub-optimal since it cannot fully benefit from the high frequency records and there lacks

a standard procedure to find the suitable sampling frequency.

The second solution is to apply the conventional RK estimator without modification

for the time dependence noises, because the RK estimator is still consistent and fast

convergent. The key of that is the fact that the bandwidth goes to infinity as the sample

size goes to infinity and the kernel function is flat enough near zero (k′(0) ≈ 0). As

long as q is finite the first q value of the kernel function will eventually be close to

one enough to correct the bias as N and H go to infinity. In Figure 3 it is clear the

bandwidth of Parzen kernel is significantly greater than that of Tukey-Hanning2 kernel

at highest sampling frequencies. It adds another reason to prefer Parzen kernel with

slower convergence rate over kernel functions with optimal convergence rate such like the

Tukey-Hanning kernel. This is also mentioned in Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2009).

Under the circumstance of a rather small noise-to-signal ratio ξ the bandwidth of

the Parzen kernel may not be large enough to balance the bias. The third solution

progressively modifies the kernel function to re-establish unbiasedness by increase the
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Figure 3: Signature Plots for Optimal Bandwidths of AA
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The signature plots are for the averaged optimal bandwidth of Tukey-Hanning2 kernel and Parzen (slow convergence)
kernel of stock “AA” in 2011. The left panels are for trade data and the right panels are for mid-quote data.

length of the “flat-top” part of the kernel to q. The MA(q) bias corrected version of RK

estimator is defined as:

RKq(H) = γ0(Y ) +

q∑
h=1

2N

N − h
γh(Y ) +

H∑
h=1

k(
h

H
)

2N

N − h− q
γh+q(Y ) (19)

where k(·) and γ’s are the same as in Equation (5) and Theorem 3.2.

Corollary 3.2.1. Assume Y is modeled as in Theorem 3.2 and q is finite. Then for any

kernel function k(·) the bias corrected RK estimator RKq(H) defined in Equation (19)

is unbiased and has the same asymptotic properties as the original RK estimator defined

in Equation (5).

The proof of Theorem 3.2 is shown in Appendix. The corollary is straightforward.

For unbiasedness, we simply apply the theorem and notice that since
∑

i θi = 0

ϕ0 + 2ϕ1 + · · ·+ 2ϕq = (θ0 + . . . θq)
2 = 0 (20)

The coefficients on the expectation brought by the noise (σ2
v) have sum zero when the

first q realized autocovariations have weight one.
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In practice, the order of moving average of the noise return is unknown. It can be

determined either as the largest lag with significantly non-zero autocorrelation of the

observed log returns or by MA model selection using AIC, BIC, or other criterion.

4 Optimal Weights

In this section, we will interpret the RK estimator with control variables approach and

obtain the optimal weights under Assumption 2. The basic idea of control variables is

reviewed below.

In general, suppose g(Y ) is an unbiased estimator of the parameter of interest, and

there are m random variables X = (X1, X2, · · · , Xm)′ which have zero expectation and

correlated with g(Y ). It is possible to construct a new unbiased estimator g(Y ) + α′X

, where α is a m × 1 weighting vector. With a proper choice of α, the new estimator

has a lower variance as long as X’s are correlated with g(Y ). This is known as the

control variables approach of variance reduction. The optimal choice of α can be solved

by minimizing the variance of the new estimator, with the knowledge of the probability

distribution of Y and X. The optimal weighting α∗ is solved as:

α∗ = −V [X]−1Cov[X, g(Y )]

The RK estimator is in fact motivated by the control variable approach. RK(1) is

the same unbiased but inconsistent estimator proposed by Zhou (1996). When H is

greater than 1 the higher order realized autocovariations are used as control variables

to reduce the variance of the estimator. The chosen kernel function assigns weights

to the control variables. The RK estimator with bandwidth H utilizes H − 1 control

variables. Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) applied the optimal

weights under Assumption 1 as a comparison to other kernel functions. In this section,

I construct the optimal weights under Assumption 2 and show a feasible approximation
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in practice.

4.1 Optimal RK Weights

We use ΓH to denote the (H + q + 1)× 1 vector:

ΓH =

ΓH,1

ΓH,2

 where ΓH,1 = (γ0, 2γ1, . . . , 2γq)
′, and ΓH,2 = (2γq+1, . . . , 2γH+q) (21)

Each γh for h > 0 is multiplied by 2 to make the control variable weights consistent

with the scale of other kernel functions and to simplify the notation in the proof of

Theorem 4.1. Suppose the noise follows Assumption 2, Corollary 3.2.1 suggests that the

unbiased estimator can be rewritten as ι′q+1ΓH,1, where ιq+1 is a (q+1)×1 vector of ones.

The RK estimator with control variable kernel is defined as:

RKq
CV (H) = γ0 + 2

q∑
h=1

γh + 2
H∑
h=1

αhγh+q = ι′q+1ΓH,1 + α′ΓH,2 (22)

The weight αh corresponds to k(h−1
H

) of a kernel function. Note that the estimator

defined above is almost unbiased. To completely eliminate the bias, γh need to be scaled

by N/(N −h) for h ≤ q. However, the effect is negligible when the sampling frequency is

high. For simplicity we used unscaled γh when deriving the variance-covariance matrix

of ΓH and constructing the optimal control variable weights. The exact unbiasedness can

be achieved by multiplying a scaling vector (1, N/(N − 1), . . . , N/(N − q)) to ΓH,1 and

the covariance matrix between ΓH,1 and ΓH,2 when computing control variable weights.

To find the optimal weights, we need the variance covariance matrix of ΓH :

Theorem 4.1. Suppose the observed process Y is modeled as in Theorem 3.2. The
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variance covariance matrix of ΓH is:

ΣH = V ar[ΓH ]

= 2IQT/N · A+ 4σ2
υIVT ·B + 4σ4

υ(N · C +D) + V [υ2](N · E + F ) (23)

where IQT is the integrated quarticity
∫ T

0
σ4
τdτ and the (H + 1) × (H + 1) matrices

A,B,C,D,E,and F are defined in Appendix B.

The matrices all have a diagonal structure. A is a diagonal matrix; B has q non-zero

sub-diagonals on each side of the major diagonal; C and D have 2q non-zero sub-diagonals

on each side of the major diagonal; while the entries of E and F are zero except the

upper-left (q + 1)× (q + 1) blocks.

In the case with q equal to one, the matrices A, B, C and D correspond to the matrices

defined in Theorem 3 of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and are

different in two ways: first, the matrices in this paper characterize the finite sample

variance covariance matrix of ΓH , while those in their paper are for asymptotic property;

second, the γ’s in this paper are defined without out of sample data.

To express the optimal control variable weights we partition the matrix ΣH into a

2× 2 block structure:

ΣH =


ΣH,11︸ ︷︷ ︸

(q+1)×(q+1)

•

ΣH,21︸ ︷︷ ︸
(H−q)×(q+1)

ΣH,22︸ ︷︷ ︸
(H−q)×(H−q)


The optimal weights α∗H = (α∗1, . . . , α

∗
H)′ can be derived by:

α∗H = −(ΣH,22)−1(ΣH,21 · ιq+1) (24)

By definition the weights generated from the control variable approach is optimal among
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all the kernel functions in the RK framework.

4.2 Approximation

The exact optimal control variable weights α∗H is not feasible in practice because it

requires the knowledge of the data generating process to construct the matrix ΣH in

equation (23). Even though the values of IVT and IQT can be replaced by some consistent

estimators, the volatility path {σi}, the MA parameters Φ, and the variance of υ are

unable to identify while necessary to construct the matrices. However we can use the

following method to overcome the problem and approximate the optimal weights.

Firstly, matrices E and F only have non zero elements in their upper left blocks E11

and F11. Therefore they affect neither blocks of ΣH in equation (24) so that V [υ2] is

irrelevant in computing α∗H .

Secondly, only the edge areas of the matrices depend on the volatility path {σi}. When

N is large we can approximate the matrices A, B and C by Â, B̂ and Ĉ respectively.

Remind that ϕ’s are defined as in equation (13) and further we define:

ψk =


0 if k < 0 or k > 2q∑q−k

j=−q ϕ|j|ϕ|j+k| if k = 0, 1, 2, . . . , 2q

(25)

Matrix Â is diagonal. Matrix B̂ has q non-zero sub-diagonals and matrix Ĉ has 2q
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non-zero sub-diagonals. Matrices B̂ and Ĉ depend purely on Φ.

Â =



1 0 0 . . . 0

0 2 0 . . . 0

0 0 2 . . .
...

...
. . . . . . . . . 0

0 0 . . . 0 2



B̂(Φ) =



ϕ0 • • • • • •

2ϕ1 2ϕ0 • • • • •
...

. . . . . . • • • •

2ϕq
. . . 2ϕ1 2ϕ0 • • •

0
. . . . . . . . . . . . • •

...
. . . . . . . . . . . . . . . •

0 . . . 0 2ϕq . . . 2ϕ1 2ϕ0



Ĉ(Φ) =



ψ0 • • • • • •

ψ1 ψ0 • • • • •
...

. . . . . . • • • •

ψ2q
. . . ψ1 ψ0 • • •

0
. . . . . . . . . . . . • •

...
. . . . . . . . . . . . . . . •

0 . . . 0 ψ2q . . . ψ1 ψ0


Thirdly, even though σ2

υ and ϕ’s can not be identified separately, their multiplications

can be consistently estimated by:

σ̂2
υϕh =

1

N − h
γh →p σ

2
υϕh (26)

Denote σ̂2
υΦ as the vector [γ0/N, . . . , γq/(N−q)]′. Then B̂(σ̂2

υΦ) and Ĉ(σ̂2
υΦ) consistently
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estimate σ2
υB and σ4

υC respectively.

We have left out the matrix D because for a large sample size N its magnitude is

small compared to N ·C. However if higher accuracy is desired the matrix σ4
υ(N ·C+D)

can be estimated using Equation (32) and σ̂2
υΦ. 2

Finally, with the preliminary estimates of IVT , IQT , and σ̂2
υΦ, a consistent estimate

of the optimal control variable weights is:

α̂∗H =

(
2

ˆIQT

N
Â22 + 4 ˆIV T B̂22(σ̂2

υΦ) + 4NĈ22(σ̂2
υΦ)

)−1

·(
2

ˆIQT

N
Â21 + 4 ˆIV T B̂21(σ̂2

υΦ) + 4NĈ21(σ̂2
υΦ)

)
ιq+1 (27)

The above equation is feasible. The realized variation (γ0) with sparsely sampled log-

returns or the RK estimator using TH2 kernel function with an arbitrary bandwidth can

be used as the preliminary estimator of IVT . The integrated quarticity IQT is relatively

difficult to estimate. Assuming an almost constant volatility path (ρ ≈ 1) ˆIV
2

T can be

used as an estimate. Both Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) and

Jacod, Li, Mykland, Podolskij, and Vetter (2009) showed how to construct a consistent

estimator of IQT . Furthermore both of the brackets in the above equation are dominated

by matrix C when N is very large. If so preliminary estimates of IVT and IQT are not

required any more to construct optimal weights. The optimal bandwidth H is infinity by

definition of the control variable approach because the more control variables the lower

is the variance. However an overly large H is undesirable because inverting matrix is

computation demanding. A rule of thumb is to use the same bandwidth as in THp kernel

function with p = 2 (or p = 16 if H∗ is not too large).

2The matrix M in equation (32) depends only on Φ. An estimate of σ4
υ(N · C + D) is obtained by

the second summation in the last step while replacing Φ by σ̂2
υΦ in matrix M . To include D in the

approximation, replace the NĈ in equation (27) by the estimate of σ4
υ(N · C +D).
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5 Simulation Study

In this section, I perform a Monte Carlo experiment to demonstrate the improvement

of the bias correction and the RK estimator using optimal weights in the case that the

noise process ε follows an MA(q) process.

I choose the RV estimator with 20 minutes log-returns as a preliminary IVT estimator

and the square of that RK estimator to approximately estimate IQT . Ignoring the MA

noise structure the RK estimator applies (γ0−ÎV T )/(2N) as the estimator of the variance

of noise. The RV estimator is defined as in Equation 8; the RK estimator is defined as

in Equation 5. The Tukey-Hanning2 kernel and the slow convergence Parzen kernel

functions are used with their estimated optimal bandwidths. The optimal weights are

computed with the same bandwidths of Tukey-Hanning2 kernel.

The original RK estimator uses TH2 kernel functions with p = 2 and p = 16. The

optimal bandwidths are computed from preliminary estimates.

5.1 Data Generating Process

The data is generated to mimic the transaction data of AA in 2011. I simulate the log-

prices for one day (6.5 hours) and the sample size for one days is 81,282 which is the

average of AA in 2011. The volatility path σt is generated by the one-factor stochastic

volatility model:

σt =
√
V · exp(β0 + β1τt) (28)

dτt = ατtdt+ dBt

which is used in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008). We choose the

following values for the parameters to match their configuration:

α = −0.025, β1 = 0.125, β0 = β2
1/2α, V = 4.03× 10−4
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V is the average of the RV of the 20 minutes log-returns. τ0 is drawn from its station-

ary distribution N (0,−1/(2α)). The experiment is conditional on the volatility path,

therefore there is only one volatility path in the simulation.

The noise return process ∆ε follows an MA(5) process and the parameters are fitted

to mimic the autocorrelations of the stock AA in 2011. The parameters as in Equation 10

are:

β = (1.00, 0.35, 0.18, 0.09, 0.03)′, and σ2
v = 3.88× 10−8 (29)

The latent log-returns are generated by the volatility process {σt} and a simulated

Wiener process. The latent log-prices are the cumulated sum of the log-returns with the

initial value of log(16) which is the usual level of the stock AA. The observed log-prices

are the sum of the noise process and the latent log-prices. The two Wiener processes gen-

erating the log-returns the stochastic volatility are uncorrelated. Finally the experiments

are repeated 100,000 times.

5.2 Result

The results are summarized in Table 3. All the estimators are computed without any

prior information and sampling at the highest frequency except the RVsparse which is

the RV estimator using 20 minutes log-returns. Different orders of bias correction q are

performed for RV and RK estimators. The bias and RMSE are stated as the percentage

ratio normalized by the true integrated variation of the process which is 5.03 × 10−4 in

this experiment. The last column of each panel captures the ratio of squared bias in the

total MSE. A high ratio implies the bias is mostly responsible for the estimation error.

The advantage of bias correction is obvious for all the estimators. Ignoring the time

dependence of the noise the bias dominates the MSE. Parzen kernel has a greater optimal

bandwidth than Tukey-Hanning2 kernel and is much less affected by the MA noises. The
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Table 3: Numerically Computed Lower Bounds of Model with MA(2) Noise

Realized Variations RK Tukey-Hanning2

Bias RMSE Bias2/MSE Average Bandwidth: 12.50
RVsparse 1.35 23.15 0.34 MA

order
Bias RMSE Bias2/MSE

RV0 922.04 922.06 100.00
RV1 1086.50 1086.54 99.99 1 179.38 182.75 96.34
RV3 228.99 229.14 99.86 3 29.72 30.75 93.42
RV5 -0.00 8.43 0.00 5 -0.01 4.10 0.00
RV7 -0.01 8.49 0.00 7 0.01 4.20 0.00
RV9 -0.02 8.51 0.00 9 0.04 4.33 0.01

RK Optimal Weights RK Parzen
Same Bandwidth as RK TH2 Average Bandwidth: 62.72

MA
order

Bias RMSE Bias2/MSE MA
order

Bias RMSE Bias2/MSE

1 264.36 267.59 97.60 1 6.11 7.07 74.51
3 71.45 71.64 99.48 3 0.84 3.45 5.87
5 0.09 3.17 0.07 5 -0.02 3.46 0.00
7 0.09 3.26 0.07 7 -0.02 3.60 0.00
9 0.09 3.41 0.07 9 -0.02 3.73 0.00

Bias and RMSE (root mean square error) are divided by the real value (5.0331×10−4) and multiplied
by 100. The ratio of Bias2 and MSE measures the composition of MSE and is multiplied by 100. MA
order is the applied order of bias correction (number of unit weights).
The top-left panel is for realized variations defined in Equation (8); the top-right panel is for RK
estimators with Tukey-Hanning2 kernel function; the bottom-left panel is for RK estimators with
optimal weights; the bottom-right panel is for RK estimator with Parzen kernel (N1/5 convergence
rate).

optimal weight estimator has greater bias than Tukey-Hanning2 kernel since it usually

weights the first few γ’s less than TH2 kernel. When the time dependence of the noises

is correctly specified (q = 5) the bias is eliminated for all the estimators. Overestimating

the MA order of th noise does not have much affect the estimators except a slight increase

of the RMSE. Therefore a safe strategy is to choose bias correction order aggressively.

After bias correction, the RK estimators have similar RMSE. The Parzen kernel with

slower convergence rate has lower RMSE than the TH2 kernel with optimal convergence

rate. It suggests that the asymptotic of the RK estimators relies on the large bandwidth

H more than the large sample size N . Nevertheless the optimal weights with the smaller

bandwidth as the TH2 kernel still has lower RMSE than the Parzen kernel which confirms
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its optimality. Considering computation cost the bias correction enables the TH2 kernel

to obtain the accuracy as the Parzen kernel with much less γ’s required. With the extra

cost of inverting a matrix of order q+H∗ the optimal weights can achieve better accuracy

than the Parzen kernel.

Interestingly the bias corrected RV estimator performs fairly well. It has smaller

bias and lower RMSE than the sparsely sampled RV estimator which is widely used as

a preliminary IV estimator. In this experiment the extra variance reduction of the RK

estimator from the RV estimator is significant but mild. Therefore the biased corrected

RV estimator may be a better preliminary IV estimator and a fairly accurate IV estimator

which is easier to compute.

6 Empirical Application

In this section various IV estimators are applied to the high frequency transaction and

mid-quote data of Alcoa Inc, which is traded with the ticker symbol “AA”. It is the

component of the Down Jones Industrial Average and is used as an example in Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2009) and Hansen and Lunde (2006). The trading

volume has spiked during the financial crisis and remains at a much higher level than the

years analyzed in the papers mentioned above. The new milliseconds database in TAQ

also makes the high frequency log-returns available in sub-seconds level.

The dataset of the year 2011 is extracted from the TAQ database in the Wharton

Research Data Services. There are 251 full trading days in the year. For each trading

day only the records within the open exchange time window and regular sale or quote

conditions are kept. The detail of data cleaning procedure is summarized in Appendix A

The time series of daily IV estimates and volumes are plotted in Figure 4. The 20 minutes

RV and RV7 move similarly most of the time and the RV7 has milder jumps. Both the

volume and volatility have three biggest jumps at May, August and October.
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Figure 4: IV Estimate and Volume of AA in 2011
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The horizontal line represents the yearly average of 20 minutes RV. The estimators use transaction data and the time series
using mid-quote data will coincide with the curves. The volume are the number of records after data cleaning procedures.

Figure 5 provides the signature plots of the RK estimators with various kernel func-

tions and order of bias correction. The signature plots of the optimal bandwidths are

given in Figure 3.

First thing to notice in the plots is the wave pattern shared by the RK estimators.

As the sampling frequency decreases (right of the X-axis) the RK estimators first decline

and then rise to the 20 minutes RV level. It may be caused by the fact that log-returns

at different sampling frequencies have different time dependence structure and as the

sampling frequency gets closer to 20 minutes the RK estimators will coincide with the

RV estimator. The pattern is also shared with the bias corrected RV estimator shown in

Figure 1 but of less magnitude.

Secondly, the RK estimator without bias correction can be very unreliable as seen

in the transaction data. Note the Y-axis is taken logarithm the deviation is larger than

it appears in the plots. This is not the case in the mid-quote data because the optimal

bandwidth is large enough to reduce most of the bias.

Thirdly, the RK estimator with Parzen kernel is relatively robust to bias correction

especially for mid-quote data. The reason is that the optimal bandwidth of the Parzen

kernel is much greater than that of the TH2 kernel. When applying a similarly large
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Figure 5: Signature Plots for RK estimators of AA
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bandwidth the RK estimator with TH2 and optimal weights will have similar signature

plots.

And finally the RK estimators are evidently below the 20 minutes log-returns RV.

According to the ACF in Figure 2 and the “aggressively estimating order of bias correc-

tion” rule the RK estimators with q = 9 is likely to be close to the real IV at the highest

frequency. The RK estimators are around 3.6×10−4 for transaction data and 3.0×10−4

for mid-quote data, both of which are smaller than the averaged 20 minutes log-returns

RV 4.0×10−4 for both transaction and mid-quote data. Since the discretization error

should be negative in quadratic variation this can be evidence of the correlation of the

latent log-prices and the noises.

7 Conclusion

This paper studies the effect of time dependent micro-structure noises on the Realized

Kernel estimators. The empirical results suggest that the higher order (than one) auto-

correlations in the noises are significant and small in magnitude. The RK estimator still

converges to the true value in this case especially when slower convergence Parzen kernel

is applied although it still suffers from finite sample bias when the optimal bandwidth is

small due to the low noise-to-signal ratio ξ2.

In order to utilize the highest frequency samples a bias correction of the RK estimator

is proposed under the assumption that the noises follow a moving average process. It

puts weight 1 on the first q autocovariations to fully balance out the bias from MA(q)

noises. As long as q is finite the bias correction does not change the asymptotic properties

of the RK estimator.

The RK estimator can be interpreted by the control variable approach. The biased

corrected realized variation RVq is an unbiased estimator of IVT and H number of higher

order autocovariations are used as control variables to reduce variance. The optimal
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weights with MA noises are more difficult to compute than those with m.d.s. noises

mentioned in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008). A feasible ap-

proximation is proposed using preliminary estimations of IVT and autocovariations γ.

The simulation experiment shows the advantage of bias correction is obvious. With

highest frequency samples the MSE of the conventional RK estimator is mostly composed

of the squared bias. Overestimating the order of the MA effect in noises does not affect

the unbiasedness but slightly raise the MSE of the estimator. Therefore a safe strategy

is to choose the bias correction order aggressively. The slower convergence Parzen kernel

is relatively robust to the MA noise while it can still benefit from the bias correction.

A comparison of different kernel functions suggests that the Parzen kernel is preferred

to the Tukey-Hanning2 even after the bias correction. The optimal weights estimator has

lower MSE than the Parzen kernel after bias correction. The plain unbiased estimatorRVq

performs fairly well compared with the RK estimators. Finally the empirical application

on the stock AA suggests the RV with 20 minutes log-returns overestimates IVT which

can be an evidence of the correlation of the latent log-prices and the noises.
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Appendix A Data Cleaning

High frequency transaction and quotation data are obtained from the TAQ database. The

cleaning procedure is essential since faulty trade or quote reports can dramatically change

the IV estimators and the autocorrelations. It also demands large amount of computation

because of the large volume especially for quotation data. The 30 DJIA component stocks

have an average of 75, 786 transaction records and 1, 208, 332 quotation records in 2011.

The procedure applied in this paper is based on Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2009) with modification to keep as many records as possible and to reduce

the computation requirement.

General Cleaning

1. Keep the records when the exchange is open that is within 9:30AM to 4:00PM. If

a different time window is of interest one can modify this filter although the data

are noisier in pre-market and post-market.

2. Delete the records with zero bid, ask or transaction prices. The transaction prices

are seldomly zero while the quotes are often zero when one side quotes are recorded.

3. (Optional) Keep the records from a single or selected exchanges. In this paper all

exchanges are included.

Abnormal Records

1. (For transaction data)

Keep the records with the field “COND” (“TR SCOND” in millisecond database)

is ‘@’, ‘E’, ‘F’, or blank.

Keep the records which the field “CORR” (“TR CORR” in millisecond database)

is ‘0’, ‘1’, or ‘2’.
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2. (For quotation data)

Delete the records with bid greater than ask.

Keep the records with the field “MODE” (“QU COND” in millisecond database)

is blank or ‘12’ (‘R’ in millisecond database).

Outliers

The above procedure filters out most of the faulty records however some outliers remains

in the series. The following outliers detecting procedure is milder and easier to computer

compared to the T4 and Q4 in Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009).

1. For each point of the trade series or mid-quote series compute the rolling average

distance from the 25 observations before and 25 observations after. Keep the records

whose average distance is within 10 standard deviation from the median of the daily

average distance.

Finally one can use the median price, bid or ask if there are multiple records for the same

time stamp. Then the sampling frequency is bounded by per second and a large amount

of records will be dropped. However with the milliseconds time database the price series

can be sampled at a sub-second frequency. To utilize as many records as possible, I keep

all the data in this paper.

Appendix B Proof of Theorem 3.2 and 4.1

Proof. The observed log returns {∆Yi}Ni=1 are consisted of two components. The latent

log returns {∆Xi}Ni=1 are discrete sampled process of the semi-martingale defined in

equation (1). The process {∆εi}Ni=1 is generated by the first order difference of a noise

process {εi} which satisfies Assumption 2.
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Denote ∆Y as the vector of observations (∆YN ,∆YN−1, . . . ,∆Y1)′. Similarly denote

∆X and ∆ε as the N -by-1 vectors of the latent log returns and the MA(q) noise differ-

ences. Then we can write ∆Y = ∆X + ∆ε.

The process {∆εi} is an MA(q) process driven by an m.d.s. innovation υ with parame-

ters (θ0, . . . , θq) as in equation (11). Denote the (N+q)-by-1 vector (υN , υN−1, . . . , υ−q+1)′

as U . Then we can write ∆ε as T · U , where the N -by-(N + q) matrix T is given by:

T =



θ0 θ1 . . . θq 0 . . . 0

0 θ0 θ1 . . . θq
. . .

...

...
. . . . . . . . . . . . . . .

...

0 . . . 0 θ0 θ1 . . . θq


(30)

To represent γh by ∆Y , define the N -by-N matrix Jk as a symmetric matrix with ones

on both of the k-th subdiagonal and zeros otherwhere. For example, J0 is the identity

matrix and J1 is:

J1 =



0 1 0

1 0 1
. . .

0 1 0
. . .

. . . . . . . . .


(31)

We can write 2γk as ∆Y ′Jk∆Y .

Expectations

E[γ0] = E[∆Y ′J0∆Y ] = E[(∆X + ∆ε)′J0(∆X + ∆ε)]

= E[∆X ′J0∆X] + E[U ′T ′J0TU ] =
∑

E[∆X2
i ] + σ2

υtrace(T ′T )

= IVT +Nϕ0σ
2
υ
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For k > 0:

E[2γk] = E[∆Y ′Jk∆Y ] = E[∆X ′Jk∆X] + E[U ′T ′JkTU ] = σ2
υtrace(T ′JkT )

= 2(N − k)ϕkσ
2
υ

Note that ϕk is zero when k > q as defined in equation (13).

Variance Covariance Matrix

When |k − l| > 2q, the covariance between γk and γl is zero. When |k − l| ≤ 2q,

Cov[γk, γl] = Cov[∆Y ′Jk∆Y,∆Y
′Jl∆Y ]

= Cov[∆X ′Jk∆X,∆X
′Jl∆X]︸ ︷︷ ︸

part i

+4Cov[∆X ′Jk∆ε,∆X
′Jl∆ε]︸ ︷︷ ︸

part ii

+ Cov[∆ε′Jk∆ε,∆ε
′Jl∆ε]︸ ︷︷ ︸

part iii

Part i:

Cov[∆X ′Jk∆X,∆X
′Jl∆X] = 0 if k 6= l

Cov[∆X ′Jk∆X,∆X
′Jk∆X] = V [∆X ′Jk∆X]

=


∑
V [∆Xi] = 2

∑
σ4
i if k = 0

4
∑
V [∆Xi∆Xi+k] = 4

∑
σ2
i σ

2
i+k if k > 0
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Therefore, matrix A is a diagonal matrix such that:

A(k, l) =


1 if k = l = 1

2
∑
σ2
i σ

2
i+k/

∑
σ4
i if k = l 6= 1

0 if k 6= l

Part ii:

Cov[∆X ′Jk∆ε,∆X
′Jl∆ε] = E[∆X ′JkTE[UU ′|X]T ′J ′l∆X]

= σ2
υE[∆X ′JkTT

′Jl∆X]

= σ2
υ

∑
σ2
i (JkTT

′Jl)i,i

where (·)i,i is the i-th diagonal element of the matrix.

The matrix B is diagonal up to the q-th subdiagonals, which means that when s > q,

the (k, k+s) element of matrix B is zero and when s ≤ q, the (k, k+s) element of matrix

B is:

B(k, k + s) =
1

IVT

(
ϕs(

k∑
i=1

(σ2
i + σ2

N+1−i) + (ϕs + ϕ2k+s)
k+s∑
i=k+1

(σ2
i + σ2

N+1−i)

+2(ϕs + ϕ2k+s)
N−k−s∑
i=k+s+1

σ2
i

)

Note that ϕk is zero when k > q as defined in equation (13).
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Part iii:

Cov[∆ε′Jk∆ε,∆ε
′Jl∆ε] = Cov[U ′

Mk︷ ︸︸ ︷
T ′JkT U, U

′

Ml︷ ︸︸ ︷
T ′JlT U ]

= Cov

[∑
Mk(i, i)U

2
i + 2

∑
i<j

Mk(i, j)UiUj,
∑

Ml(i, i)U
2
i + 2

∑
i<j

Ml(i, j)UiUj

]

= V [υ2]
∑

Mk(i, i)Ml(i, i)︸ ︷︷ ︸
N ·E+F

+4σ4
υ

∑
i<j

Mk(i, j)Ml(i, j)︸ ︷︷ ︸
N ·C+D

(32)

The summations are difficult to write out explicitly. They both include a dominant term

(N times C or E) and a reminder term (D or F ). The matrix C and E can be expressed

as following:

On the edge of the C matrix,

C(0, s) =



∑−1
i=−q ϕ

2
i if s = 0∑−1

i=−q ϕi(ϕi+s + ϕi−s) if 0 < s ≤ 2q

0 if s > 2q

In the interior of matrix C, (k > 0)

C(k, k + s) =
k−1∑
i=−q

(ϕi + ϕi−2k)(ϕi+s + ϕi−2k−s)

When k > q, the above equation is simply:

C(k, k + s) =


0 if s > 2q

ψs if 0 ≤ s ≤ 2q

where ψs is defined in equation (25).
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The matrix E has non-zero elements only in the upper left block E11,

E11 =

[
ϕ0 2ϕ1 2ϕ2 . . . 2ϕq

]
·
[
ϕ0 2ϕ1 2ϕ2 . . . 2ϕq

]′
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